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Abstract. In this note we show that many classes of global optimization problems can be treated most 
satisfactorily by classical optimization theory and conventional algorithms. We focus on the class 
of problems involving the minimization of the product of several convex functions on a convex set 
which was studied recently by Kuno et al. [3]. It is shown that these problems are typical composite 
concave programming problems and thus can be handled elegantly by c-programming [4]-[8] and its 
techniques. 
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1. Introduction 

Under consideration in this discussion is the class of optimization problems of  the 
following multiplicative form: 

p 

PROBLEM P: z* := m i n g ( x ) : =  I I  f j ( x )  (1) 
xEX 

j----1 

where p is a positive integer, X is a convex subset of 7-4 ~, and {~ } are real valued, 
strictly positive, convex functions on X. Since in general the function g is not 
convex with x, such problems are typically global optimization problems. 

In a recent paper, Kuno et al. [3] showed that optimal solutions to Problem P 
can be obtained by solving the following parametric problem: 

P 

PROBLEM MP: z ~ := mi , 'ng(x;~) :=  ~ ~ j f j ( x )  (2) 
j=l 

subject to 

x E X , ~  E 7~ p (3) 
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p 

j = l  

_> 0. (4) 

Namely, it was shown that there exists an optimal solution to Problem ME say (x*, 
~*), such that x* is an optimal solution to Problem R Kuno et al. [3] also discuss an 
algorithm based on outer approximation for solving the parametric problem, thus 
solving Problem R 

In the next section we briefly analyze this approach and then in Section 3 we 
present a more direct parametric approach. 

2. Analysis 

The relation between Problem P and Problem MP can be explained as follows. 
Define, 

P 

PROBLEM MIY: z' := m i n g ( x ; ~ ) : =  ~ j f j ( x )  (5) 
x,~ 

j = l  

subject to 

x E X  (6) 

P g(x) j = 1,1 . . . ,p.  (7) 
~J = [ I  f j ( x ) =  f j (x) '  

i = l  
iCj  

Observe that by construction, any pair (x,() satisfying (6)-(7) also satisfies g(x;~) 
= pg(x), Vx E X, ( E 7~ p satisfying (7). Thus, if we let 

g(x) g(x) 
:= f l (x) , . . . ,  f p ( x ) l  ,x e x 

we immediately obtain the following: 

(8) 

OBSERVATION 1. 

Let x* be any optimal solution of Problem E Then, (x*,~(x*)) is an optimal solution 
for Problem MP' and furthermore, (j(x*)fj(x*) = z*, Vj = 1 .... ,p. Hence z' = pz*. 
(> 
Let us now examine the relation between Problem MP and Problem MP'. We want 
to replace thep equality constraints given by (7) with a single functional constraint 
involving the parameter ~, say ~(~) = c. What form should cy and c take so that 
the inclusion of r = c in the model will yield the desired optimal solution and 
satisfy (7)? 
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Observe that if we multiply the p equations stipulated by (7), we obtain 

~ g ( x )  _ g ~ - ~ ( x ) .  (9) 
II = II S (x) 
i=1 i=1 

This suggests that we define 

P 

!~(~) := 1-I ~J, ~ G n p (lO) 
j = l  

and 

in which 

c := gp-l(x) 

case ~(~) = c yields 

P 

H ~J = gp-I(x) 
j----1 

which in turn is equivalent to 

P 

j=l g~-~(x)  1. 

(tl) 

(12) 

(13) 

So it follows from (13)-(14) that Problem MP and Problem MP' are essentially 
equivalent, the only difference being that in the former the variable ( is normalized 
so as to yield 1 in the right-hand side of its functional multiplicative constraint. 
This immediately yields the following: 

OBSERVATION 2. 

The pair (x*,~') is an optimal solution of Problem MP' if and only if the pair (x* ,(o) 
is an optimal solution of Problem ME where 

! 

~J j = 1 . . . .  ,p. 
((z.)p-i' (15) 

p 

H ~ j  : 1,~_> O. 
j = l  

(14) 

We therefore conclude that any solution (x,~) satisfying (7) will also satisfy (13). 
Next, note that because the functions {fj} are strictly positive on X, it is clear 

that the functional constraint (4) is binding, therefore we can replace (4) by 
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ThUS, 

zO _ z' _ pz* - p~z-;.<) (16) 
( ( z* )P  -1 P~/(z*)P -1 

In summary, although not explicitly stated by Kuno et al. [3], the approach based 
on the use of Problem MP as a framework for solving Problem P has its origin in the 
substitution of variables stipulated by (7). In this sense, from the methodological 
point of view, Problem MP' should be regarded as a more appropriate framework 
than Problem MP. 

In the next section we show that Problem P can be treated by classical optimiza- 
tion methods and algorithms. 

3. Quick and Elegant via C-Programming 

The composite structure of the objective function g of Problem P immediately 
suggests the use of c-programming for the derivation of a suitable parametric 
problem. Details concerning c-programming and its applications can be found in 
[4]-[8]. In particular, in [8] its potential role in global optimization is discussed. 
Here we shall outline the general nature of the parametric problem that it proposes 
for Problem P. 

Let us begin by recalling that c-programming was designed primarily for prob- 
lems that admit the representation: 

PROBLEM C: r* := minc(y)  := ~ ( u ( y ) )  (17) 
yeY 

where c is a real valued function on some set Y; u is a function on Y with values in 
~k ;  ~ is a real valued function on u(Y): = {u(y: y 6 Y} and �9 is differentiable and 
pseudoconcave with respect to u on some open convex set U C_ ~ k  such that u(Y) 
C U .  

The parametric problem, obtained by linearizing �9 with respect to u, takes the 
form: 

PROBLEM C(A) : 7r(A) := minc(y;  A) :=  Au(y) ,  A E Tt k (18) 
yey 

where A is a row vector and Au(y) denotes the inner product of A and u(y). 
As expected, the relationship between the optimal solutions of Problem C and 

those of Problem C(A) are linked via the gradient of �9 with respect to u; namely: 

FUNDAMENTAL THEOREM of C-PROGRAMMING [7]. 

Let y* be any optimal solution of Problem C and let A* denote the gradient of 
with respect to u at u(y*. Then any optimal solution of Problem C(A*) is also 

optimal with respect to Problem C. In other words, F*(Vff(u(y*))) C_ I1", Vy* E 
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Y* where Y* denotes the set of optimal solutions of Problem C; Y*(A) denotes the 
set of optimal solutions of Problem C(A), and Vr  := grad r 
y E  Y.  [] 

Clearly, the Fundamental Theorem of C-Programming is based on such classical 
concepts as linearization and properties of differentiable pseudoconcave func- 
tions. 

It is left to show that Problem P is indeed subject to this basic theorem. We can 
p do this directly, observing that the function �9 defined by �9 (z) := YIj=I zj, z E ~P 

is differentiable and pseudoconcave on the open convex set (0, ~)P .  
So Problem P satisfies all the requirements of c-programming and thus can be 

solved via the parametric problem 
P 

aJ(/~) := m i n ~ " ~ j f j ( x ) ,  A E I" (19) 
x E X  

where r is any subset of ~ k  such that V~5(u(x))EF for all x in X. 
Thus, for each value of A, the parametric problem is a classical optimization 

problem involving the minimization of a convex function. With regard to F, it 
should be pointed out that because the gradient of ff is strictly positive everywhere 
on u(X), the elements of r can be normalised in the usual way. 

In any case, the important thing to observe is that unlike Problem PM, where 
the parameter ~ appears both in the objective function and in the constraints, and 
where the objective function is optimized with respect to both the original variable 
x and the parameter ~, in (19) the parameter ,~ does not appear in the constraints, 
nor do we have to optimize the objective function with respect to it. In short, we 
can employ standard Lagrangian methods to solve (19) for all ,~ in r .  We shall 
not elaborate on this point here, but rather refer the reader to [4]-[8] for details 
concerning c-programming algorithms. 

To appreciate the implications of these observations, let us consider the case 
where X = {x E ~ : A x  > b , x  _> 0} andj~(x) =djx, dj E T~m,j = 1 .... ,p,x E X, 
namely, the case where the constraints and the functions {~ } are linear. 

In this case the parametric problem of c-programming is a standard parametric 
linear programming problem. In fact it can be solved by conventional LP algorithms 
designed for multiobjective linear programming problems. There are even readily 
available packages for this purpose [9]. It should be pointed out, though, that here 
we are not interested in generating all the non-dominated solutions, only the non- 
dominated basic solutions needed to cover F. Thus, solving the parametric problem 
of c-programming should be much faster than solving the usual multiobjective 
linear programming problem. 

Furthermore, it should be recalled that the Fundamental Theorem of C-pro- 
gramming applies to a large class of composite functions, not only the multiplicative 
one. The only requirement is that ~, is differentiable and pseudoconcave on U with 
respect to u. 
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4. Summary and Conclusions 

C-programming offers a classical framework for the analysis and solution of mul- 
tiplicative programming problems of the type studied by Kuno et al. [3]. Fur- 
thermore, the same framework can be used as elegantly and as efficiently for the 
treatment of other classes of nonlinear optimization problems, namely problems 
whose objective functions admit the representation required by Problem C. It must 
be appreciated that because the solution set Y of Problem C is not required to satisfy 
any particular conditions, the Fundamental Theorem of C-Programming is valid 
even in cases where Y is a finite set. This means that c-programming offers a "clas- 
sical approach" to the analysis and solution of many interesting and challenging 
combinatorial optimization problems. 

On the algorithmic side, because the parametric problem of c-programming 
is of the classical Lagrangian variety, it would appear that efficient algorithms 
are in fact readily available for a number of important classes of multiplicative 
programming problems, e.g. multiplicative linear programming problems as well 
as multiplicative quadratic programming problems. 

We should stress that these comments should not be interpreted as suggesting 
that we question the suitability of non-classical methods for the treatment of global 
optimization problems of the type discussed here. We merely indicate that classical 
methods and algorithms are capable of dealing with problems of this type, and that 
it may well be advantageous to use them for this purpose. 
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